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Abstract. We show that the super theta function of Levin is a matrix coefficient of the
super Heisenberg group.

1. Introduction

In a well known paper [1], Weil established the foundation of the classical theory of
theta functions from a representation-theoretic viewpoint. The classical theta functions °
were shown to be ‘matrix coefficients’ of the Shale-Weil-Segal metaplectic oscillator
representation. This representation of the extended metaplectic group (i.e. the semi-
direct product of the double covering Mp(n) of the symplectic group Sp(n, R) and the
2n-dimensional Heisenberg group H,) is the meeting point of several branches of mod-
ern mathematics, including number theory, group representation theory and quantum
field theory. We relate the super theta function of Levin [2-5] to a super version of the
oscillator representation. 1t is shown in section 4 that there is a geometric picture behind
the theory of super theta functions.

2. Rudiments of superalgebras

We start with some generalities on superalgebra. Let A be a super commutative associ-
ative algebra over C, and A =A@ Ay is the decomposition into even and odd elements.
A real structure * on A is a linear map satisfying the conditions:

(i) Af<Ajand AT AT
(i) (Aa)*=1a* VAeC, aecA
(ili) (aB)Y*=c*p* Ya, feA

(iv) a*™ =(—1)%a, YacA, where @ is the degree of an homogeneous e (it is { when
aeh; (i=0, 1)).

The supergroup GL(n[m, 4) consists of all invertible super matrices

£
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in block form with even entries of A in &, b and odd entries of A in 1, £. The super-
adjoint is given by

e ( - q*)
¢+ b+
where a” = (a}f} for a=(a;), and a,€ A is the conjugate transpose. Then the super unitary
subgroup U(n|m, A)={AeGL(mm, A)|A¥=A"'} and the orthosymplectic group
QSP(2n2m, A} is defined as a subgroup of GL(2n|2m, A) preserving the standard skew-
symmetric bilinear form on A*''*", OSP(2n| 2m, A) = {AeGL(2n|2m, A): A* FA= &}

where
(k0 {01 _{o 1
ﬁ"(o J) K‘(—l o) J (1 o)

are of size nx n and m X mr respectively. So A OSP(2r| 2m, A) iff

a* Ka—n*in=K a*Ké=n*Jh E*Ka=—b*Jn EYKE+D Ib=T

(N
for A=(a é)
n bl

Note that the third equation is obtained by taking the adjoint of the second equation,
so we indeed have only three equations. Also, e U(n|m, A) iff

ata—n*n=1 a*&é=n*b EE+bth=1 )

A= (" 5).
n b
We make use of the fact that a** =g and &** = — £ for even and odd matrices, respec-

tively. We see further that OSP(2n] 2m, A) contains naturally a U{r|m, A} as follows:
we consider elements of OSP(2n| 2m, A) of the form

a 0 0 ¢
0 0
0 5 0
0 b

Lom Qs S~

i

hence a is an # X n even invertible matrix, £ is an #xm odd matrix, etc. Then the
defining equation (1) becomes (2). So the subgroup consisting of all these matrices is
U(n|m, A). We see that the homogeneous space OSP(2r|2m)/U(n]m) is a supersym-
metric analogue of the Siegel upper half plane when n=0 and the compact symmetric
space SO(2n)/U(n) when m=0.

One can also start with Lie superalgebra over R, say R =Rz N5 with a Z/2 grading.
To exponentiate to the corresponding supergroup, we note that in general there are no
real points but rather A-points, i.e. W, =exp R, where R, = (RDaAs) B(RiDrAT,
where we consider the exponentiation taking place inside the universal enveloping alge-
bra of M, . in the following we often drop the dependence of parameters and simply
write OSP(n|m), R™", etc, and it is understood that the fixed algebra A supplies all
the parameters.
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3. Super Weyl algebra and the super oscillator representation

Let V be a real super vector space of dimension 2r| 2in with non-degenerate skew-

symmetric form (' , ). Let@i,..., @, @ ,.... Gh, @1y.e., @ny &1 ,..., 0F bea
basis of ¥ such that the matrix of ( , ) with respect to this basis is
0 1 ¢
-1 0
#= 0 1
0 1 0

e (@,a)=(a,a)=(a:,,)=(2'./)=0 and (a.q')=8;=(a., ¢/). So V=
Ve@® Vi, {a;, a} is a basis for V5 and {e,, @} a basis for V;. We can construct the
super Heisenberg algebra s#(V') as a central extension of the Abelian Lie superalgebra
V by an even generator ¢. We have an exact sequence 0 =R ¢—s#(V) —» V=0, and
the Lie bracket is defined by [u, v]=(u, v)c, Yu, ve V. We also write sh{V)=
sh(2n] 2m). Let WA(V) be the quotient of the universal enveloping algebra U(h(V)) by
the ideal generated by ¢ — ¢, This is the super Weyl algebra. Therefore W{( 17} is generated
by a,, @, , a;, &; if we identify the basis of V' as their images in U(h(¥)) and W(V).
The relations are

[ar', aj]='0=[ai’ aj]:_-ia:, a;:[:{a;k,a;] (3)
(4. a,]=1i6,=[e:, ;']

We also write W{ )= W{(2nr|2m). There is a natural grading in W( V) determined by
assigning a;, a; , a;and @, to have degree 1. So W(V)=@;»0 W: where W, consists of
degree i elements. The associated graded algebra gr B/ V) is the full (super) symmetric
algebra S(¥) on V. The quadratic elernents S*(¥)=S*Vo@(Vo®V)®/\*V, inside
WA(V) act on V as derivations preserving ( , ): that is to say for a linear operator
D with degree D we have

(i} D(ab)=(Da)b+(—1)YCa(Db)

(i) (Da, b)+(-1)%(a, Db)=0, Va, be V.
S¥V) is therefore a Lie superalgebra with even part S*(Fo)®@/\*V; and odd part
Vo® V7. There is an identification of all infinitesimal transformations of V preserving
{ , ) with $%()), and this subalgebra of End(}’) is the orthosymplectic Lie super-
algebra osp(V') = osp(2n| 2m). In the special cases when F=0 (respectively V,=0) we
recover the Weyl algebra and the symplectic algebra sp(¥') on one hand, and the Clifford
algebra associated with a symmetric bilinear form on V) and the orthogonal algebra.

With respect to the aforementionad basis of V, elements of osp(2r| 2im) are super
matrices which satisfy the equation 4%+ 4=0, where 4% is the supertranspose of A4
[6]. The isomorphism beween osp( V) and S%( /) can be determined as follows. For all
veosp(V) let a(u) be the corresponding element in S*(V). Then for all veV,
[a(x), v]=u(v). The basis of (V) is given by quadratic elements of the form

+ +
a a;+aa
a,a; 2 aial for $?V,
J 2 4
@, ai a;, ai'a aia; for Vo@V,
k3 +
Q; ,—o,0;
2, L alaf for A’V

2
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We see further that there is a semi-direct sum osp( V)@ V of Lie superalgebras: osp(V')
acts on V as derivations preserving { ., ). Foru, ve Vdefine £, ,cosp(V) by E,..{w)=
3[(u, wyo+ (v, wyu], then V5 belongs to the odd part and V1 belongs to the even part
of this enlarged Lie superalgebra. For instance, when Fi=0 we have sp(V)@ Vo=
osp(1|2x). Originally, we can think of the basis a,, g, as bosonic oscillators which obey
canonical commutator relations. However, when a,, afe Vicosp(1|2r) we have to
impose anti-commutator relations {a, @ }« =a:a/ +a; a, for osp(1|2r). This ‘parity rever-
sal’ phenomenon has been mentioned in Beckers and Cornwell [7] and Ginaydin [8).
For the case of V5=0, we have o(2m)@V=0(2m+1) [9].

Next, we turn to the representation-theoretic significance of the super Weyl algebra.
Even though we can view W{F) as a deformation of the (super) symmeiric algebra
S(}y on ¥V, W(}¥) is important in the extreme cases when V=0 or V=0 to induce
the metaplectic (Segal-Shale-Weil) representation for the symplectic algebra (group)
and the spinor representation for the orthogonal algebra {group). respectively. Explic-
itly, the construction is via the action of the Lie algebras on the Fock spaces (bosonic
or fermionic). We view the basis elements of I as bosonic or fermionic oscillators where
a; and @, are creation operators and & and &, are annihilation operators.

Let S be the algera generated by x, (1 <i<m), 3,(1 <j<#) which is symmetric in
x;$ and antisymmetric in y,;s. Therefore .S is just the polynomial algebra on x,s tensor
the exterior algebra generated by ps. For (k,D=(k,....k..0,.... L)€
Z%0% {0, 1}", we define

x(k)::{x"qx’zcz Xy (keZ'Zo)
0 otherwise
AA A 0, 1}”
y(!):={}l J/ ( i .} ). (4)
0 otherwise

Clearly the set {x(k) - y(!)| (k, 1}eZ%0x{0,1}"} is an algebraic basis of S as a
vector space. W{(V') acts on S via

a(x(k)):=kx(k—e)
af (x(k)):=x(k+e,)
eu (3= (=1)1" T = )
2a(y)) = (=1 i+ £)
and
x(k):=0 if some &; <0 (%)

Vh=(h,...,ln}eZ%, and Vi {0, 1} " where es are elements of Z%,, f,s elements of
{0, 1} " defined by e,=(0,...,1,...,0), etc. g, and & act trivially on all p{/)s while
@, and a, act trivially on all x(k)s. Then we have the following.

Theorem 1. The representation § of W{( V) is irreducible.

Proof. Let U be a subrepresentation of S and let u=Z,, ayx(k)y(I) (ax,€C) be non-
zero in U, then there is a maximal element k"= (k) in {keZ%,|a,#0} for fixed
fe {0, 1} " according to the lexigraphical order and we can pick the maximal element A°
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among the set {0, 1}”, which is finite. Then for this &°, I°
dV . a%all . alu=ap okt kS x(0)(0) (6)
so x(0)p(0) U. But obviously §= W x(0)y(0) by construction, therefore /=35,

S has a natural grading S= @20 5™ by assigning x, and y; to have degree 1. In
particular 5= S ®Soe where S i=S= @708, Soai=S=@ Foo5**",

Since the orthosymplectic algebra osp(2m|2n) embeds as quadratic elements of
W(V), S becomes an osp-module. This is called the super oscillator representation of
osp(2m| 2n) (or Singleton representation in the physics literature [10, 11] because only
one set of bosonic and fermionic oscillators are used in the construction).

Theorem 2. The osp(2n1] 2n) module S, (respectively S.q4) is irreducible and is generated
by x(0))(0) (respectively x(e,)).

Also, if we define a Hermitian form { | } on § such that (x(0){x{(0))=1 and
(3(0)| »(0)) =1 and make S a -representation of W(¥) with a}:=a; and ¢}:=a,, and
an orthogonal basis is given by

() | x UYWAY = BBk . Ko Vk, k'e 2% L1Ue{0,1)" (7)

Theorem 3. (| ) is the unique Hermitian form satisfying the above properties and
(S,( | ))isthen a “unitary’ representation of W{(J).

Remark 1. A #-algebra is a C-algebra (or superalgebra) with a C anti-linear algebra
automorphism *: a— a* such that = is a graded involution. A representation W of »-
algebra A is a »-representation if there exists a Hermitian form ( | ) such that
(au| ) =(—1)"(u| a*v)Vu, ve W,Yac A. W is called unitary if ( | ) is definite.

In the purely even case the representation theory of the Heisenberg algebra and
group are fairly simple: there is essentially only one unitary irreducible representation
for the Heisenberg group H,,. where the centre acts non-trivially. This essentially means
that any iwo such representations with the same action of the centre are unitarily
equivalent. This is the content of the Stone-Von Neumann theorem [12]. Let ¥ be a
2n-dimensional real vector space. We can associate the Heisenberg algebra s#(2n|0),
the Weyl algebra HW/(2n|0), the symplectic algebra sp(2#n) as well as the corresponding
groups H(2m), Sp(2n) with V. Among all the equivalent infinite-dimensional represen-
tation spaces which give the unique unitary irreducible representation, two are of special
interest. The first is the Schwarz space in L*(R") and this is called the Schrddinger
representation p: H(2n) — Aut{S(R")). H{(2n) is the simply connected (2r+1)-
dimensional real Lie group with Lie algebra s#(2r|0). If (x, ..., x,) are the standard
coordinates on R" and (ay,...,a.,af,...,a;) is a basis of V such that
la,, a/]=38,A""c where ¢ is the generator of the centre of H(2n) then y is defined as
follows:

plexp(xa; ) f)(u) =exp(2miu;)f (2)
p(exp(yai ) f Yuy=f(u+y) (8)
pexp(te))f{m) =exp(2ritA)f (n) some AeCfor 1 <ign.



2744 WTLo

Therefore, infinitesimally we have

(@)@ S )y =2 a)
@nEh =2 ©)

(da)(e)(f Wa) =2milf (u)

where feS(R"). The symplectic group Sp(2n, R) acts as automorphisms of H{(2r) and
hence from the Stone-von Neumann theorem there exists an intertwining action of
Sp(2n, R) on S(R"). It is well known that this is not a true representation but rather a
projective representation. It can be lifted to a double cover Mp(2n, R} of Sp(2a, R) to
become a true representation of this group. This is called the metaplectic or oscillator
representation. We describe Mp,(R) as the set [13]

{(A,j'-’z(A, 7)) with A& SLo(R), (A, 1)=cr+dif A4 =(‘: Z) , TEH}.

The lift of any discrete subgroup of SL,{R) is still discrete in Mp(R). The group law in
Mpa(R) is simply given by (A, /2(A4, ©)) - (42,7 *(Az, 7)) = (A4, A2, ] (A A2, T)),
which makes use of the property j(A142, 7) =4\, Az T}i(A42, 7). We can view it as a
representation of the semi-direct product Mp(2n) x H(2n). On the other hand, the Fock-
Bergman model explicitly shows that in fact Mp(2r) x H(2n) acts holomorphically.

One would like to extend the above bosonic picture to the supersymmetric case. It
is well known that the fermionic picture corresponds to the representation theory of
the Jordan algebra, orthogonal algebra and group, and also the Clifford algebra and
its spinor representation (see [15], [16]). The super analogue of the Stone-von Neumann
theorem should correspond to the following proposition in the even case.

Theorem 4. There exists a unique “unitary’ simple W(F) module.

Proof. Basically this is given by the bosonic Fock space. In the supersymmetric case,
if V=V;®V7 is the decomposition into even and odd parts, the Weyl algebra
Wy (V5)®@ W(V5) where the canonical isomorphism follows from the super
Poincare-Birkoff-Witt theorem. Up to equivalence, we have a unique irreducible #(¥5)
module, the bosonic Fock space M, and a unique irreducible W(¥7) module, the finite-
dimensional fermionic Fock space, M, . We take M= My@ M, . Then M is an irreducible
W(V) module. For the uniqueness part, let & be an irreducible W(¥) module and let
Noi=Homuyw, (M, N), then No®@cM, =N as a W(V) module. Since N is irreducible
as a W(V') module, so must Ny be as a W{( V) module, hence No= M, and N= M.

Notice that we need dimF =2#n|2m in order to ensure that the Clifford algebra
H/( ¥V} has only one irreducible module.

Next we consider the extension of the Schrédinger representation to the super
Heisenberg algebra s1(2m| 2n) and group sH(2mi| 2n).

The target space for the super Schrédinger representation is LY(R"™):= L{R"®
/\*(R™)* and the smooth vectors are the Schwarz space S(R™"):=S(R")@ A*(R™*,
i.e. the analysis appears solely in the even part. The appropriate Hermitian form is
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given by

S(x. 8),8(x, 8)>= Hf (x, glx, &) dx d8 (10)
where

J‘}d3=0 j&....&lmds:I
follows the Berezin rule of integration and (x, $)=(x;,..., x.; 81,..., 3,) are the
coordinates on R""™. ¢ , ) is non-degenerate, even and sh(2x| 2m) invariant with

respect to the super Schrdodinger representation.

Infinitesimally du sends a; to multiplication by 2zix;, 4 to 8/8x,, a, to multiplica-
tion by 2714, and g to 2/23,; also, the central element ¢ acts by multiplication by i.
We have

<du(u)f(x, &), g5 +<{f, duu)g>=0 (11}

for all uesh(2m| 2n) and f, ge L*(R™"™). For the sake of simplicity, we restrict ourselves
only to the simplest situation n=m=1 without losing generalities. In exponentiating
the Lie algebra action L*(R''") to the group level, we obtain

{1 (exp(ka))f}(x, §)=exp(2nikx)f (x, 9)

{u(exp(la™)f}(x, )=f(x+1, )

{u(exp(ca))f}(x, 9)=exp(2ricd)f(x, )

{H(exp(pa ™))} (x, 8)=1(x, $ + p) (12)

where (x, $) is the coordinate on R'"', k, / are even real parameters and o, p are odd
real parameters. We call this the super Schrédinger representation of s#.

4. Super theta functions as matrix coefficient

We recall that an even family of supertori is defined as the quotient of C'!" with the
standard superconformal structure (D:=08/90+ 62/3z with respect to global coordi-
nates (z, @)) by the action of an Abelian subgroup=Z? generated by

Az, =+,
Bz, ) (z+1,—8) with Im7>0
since this even supertori family

CI]IXH
22
1)
M

gives a split super Riemann surface [16] of genus 1, the minus sign in the last expression
specifies the corresponding even spin structure on the underlying torus X,:=C/Z + Zr.
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The corresponding spinor section is given by

— _ %40, 7) 9.i(z, 7)
P =Vp()—er= 81(0, 7) u(z, 7)

where (z) is Weierstrass g-function. The other two even spin structures are respec-
tively associated with

Az, = (z+1,-8) Bz, ) —(z+1,8)
and
Az, 0= (z4+1,-8) Biz, )~ {z+1,-0).

We recall the fact that the SLy(Z) action preserves the odd spin structure on X, and
the modular transformation

z atr+b a b
(Z’T)H(cr+d’cr+d) (c d)ESLz(Z)

transforms the even spin structures into one another. The subgroups of SLy(Z) which
preserve an even spin structure are conjugate to

_Ha b fa By {1 *
nay{ﬁtJﬁhmyt J:& Jli} (13)

Let ['5(2) be the lift of I'y(2) to the metaplectic group Mp»(R). The necessity of introduc-
ing Mpx(R) is just a way to allow taking square roots of functions!

Let Y., —H, where H is the upper half plane, be the family of even supertori
C'"'x pH-H.

Since an even family Y,— H is given by a quotient of C™'"° with respect to two
generators, we will have four super theta functions after Levin [3].

Theorem 5. The series

2
z exp[zrri((mzs) T+ (m+6)z+ «‘-‘)), (—1)'"”4'] (14)

meZ

where explu, £]:=(exp u)(1 + &)=exp(u+ &) is the exponential function on C''',

8, £e{0, =}, converges absolutely and uniformly on compacta and thus defines a holo-
morphic function 935, 2:(z, {| 7) on €' x H, called the even super theta function with
characteristics d and e.

We want to relate the even super theta functions to the super Schrédinger represen-
tation. We take the Gaussian v.(x) =exp mirx’ with re H where (x, 8) is the coordinate
on R'!", then v, is holomorphic function of 7 and as a function of (x, 8) it belongs to
S(R''"). We compute for &, 1| £, ) eR*'?,

plexp ka)p(exp la*yu(exp oa)u(exp pa®)o, (15)
=exp[2rikx + wir(x+1)?) exp 2xicg. (16)
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Theorem 6. We define the ‘theta distribution’ 4 on LYR'"") so that
Qo f(X)+g(x)8>=F fim+8)+(—1)""4g(m+8) (1D

wel

where 6 {0, 3} and f(x} +g(x)®#€LYR""). Then we have
955,0(z, §| v) ={A. plexp ka)u(exp la"ulexp oa)ulexp pa)o.y.  (18)

This is holomorphically dependent on = and o, which are the appropriate holomorphic
coordinates on C''' with the odd ‘imaginary’ part p degenerated.

Proaf. We have
(A, ulexp ka)p{exp la™Yu(exp ca)ulexp paJ’)ur}

2
=Yy epoﬁ[w r+(m+5)k+(—l)‘”*5(m+5)cr}
me?
2
=Yy exp2ﬁ|:-(~’-jz:£ﬂr+(m+6)z+(—])'"*5(m+5)aj| (19)
me#

where zi=k+Ir. 1t is clear that we obtain 835 ¢(z, {|r) as the matrix coefficient of
sH(2|2).

In conclusion, we do not get a representation of the semi-direct product s#H{2|2)
with OSP(2|2) here, nor have we described explicitly what the OSP action is, even
though the infinitesimal action has been given above. We would like to address these
issues elsewhers. However, what we have done so far suggests a more geometric
approach to super theta functions and the Weil representation even though there are
important differences between the even and odd cases because the existence of a cubic
term #7° in the definition of odd super theta functions [17] means that we cannot work
with the Gaussian which can only provide a quadratic term m?® as in the definition of
the even super theta functions.
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