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Super theta functions and the Weil representation 

w T Lo 
Department of Mathematics. Science Centre, Chinese University of Hong Kong, Shatin, 
New Territories, Hong Kong 

Received 24 September 1993 

Abskact. We show that the super theta function of Levin is a matrix coefficient of the 
super Heisenberg group. 

1. Introduction 

In a well known paper 111, Weil established the foundation of the classical theory of 
theta functions from a representation-theoretic viewpoint. The classical theta functions 
were shown to be ‘matrix coefficients’ of the Shale-Weil-Segal metaplectic oscillator 
representation. This representation of the extended metaplectic group (i.e. the semi- 
direct product of the double covering Mp(n) of the symplectic group Sp(n,  W) and the 
2ndimensional Heisenberg group H,) is the meeting point of several branches of mod- 
ern mathematics, including number theory, group representation theory and quantum 
field theory. We relate the super theta function of Levin [2-51 to a super version of the 
oscillator representation. It is shown in section 4 that there is a geometric picture behind 
the theory of super theta functions. 

2. Rudiments of superalgebras 

We start with some generalities on superalgebra. Let A be a super commutative associ- 
ative algebra over IC, and A=A&Ai is the decomposition into even and odd elements. 
A real structure * on A is a linear map satisfying the conditions: 

(i) A$c& and /\?CAT 

(ii) (La)* =Ia*, VAC@, aEA 

(iii) (ap)*=a*P*, Va, PEA 

(iv) a**=[-l)’a, VacA, where (I is the degree ofan homogeneous a (it is i when 
aeA; ( i = O ,  I ) ) .  

The supergroup GL(nlm, A )  consists of all invertible super matrices 
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in block form with even entries of A in a, b and odd entries of A in 7 . 5 .  The super- 
adjoint is given by 

where a'= (a;) for a= (a,J, and aVeA is the conjugate transpose. Then the super unitary 
subgroup U(nltn, A) = {AEGL(n]ni, A)IA"=A-'} and the orthosymplectic group 
OSP(2n12m, A) is defined as a subgroup of GL(Znl2rr1, A) preserving the standard skew- 
symmetric bilinear form on Ah"'". OSP(2nI 2m, A ) =  {A~GL(2n12ni,  A): A # $ A = j }  
where 

are of size n x n and m x n1 respectively. So A E OSP(2n I 2111, A) iff 

a'Ka- q'Jq = K a'K5= q'Jb g'Ka= - b i J q  { ' K t  + biJb= J 
( 1 )  

for A = t  '). 
0 6  

Note that the third equation is obtained by taking the adjoint of the second equation, 
so we indeed have only three equations. Also, A E  b'(nIm, A) iff 

a+a- q + q =  1 a'c= q'b e'c+b'b= 1 ( 2 )  

We make use of the fact that a" = a  and 5'' = - 5 for even and odd matrices, respec- 
tively. We see further that OSP(2nI 2m, A) contains naturally a U(nl in, A) as follows: 
we consider elements of OSP(2nI 2n1, A) of the form [: ; x 

O q b O  

hence a is an n x n even invertible matrix, 5 is an n x 111 odd matrix, etc. Then the 
defining equation ( I )  becomes (2 ) .  So the subgroup consisting of  all these matrices is 
U(nIm, A). We see that the homogeneous space OSP(2nI 27?7)/u(fll177) is a supersym- 
metric analogue of the Siege1 upper half plane when n = O  and the compact symmetric 
space SO(2n)/U(n) when tn=O. 

One can also start with Lie superalgebra over W, say W = %@Wi with a B / 2  grading. 
To exponentiate to the corresponding supergroup, we note that in general there are no 
real points but rather A-points, i.e. WA = exp (RA where BA = (WaB&)B(Wj@,Ai), 
where we consider the exponentiation taking place inside the universal enveloping alge- 
bra of WA. In the following we often drop the dependence of parameters and simply 
write OSP(nIin), W""", etc. and it is understood that the fixed algebra A supplies all 
the parameters. 
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3. Super Weyl algebra and the super oscillator representation 

Let V be a real super vector space of dimension 2nl2n1 with non-degenerate skew- 
symmetric form ( '  , ). Let a t , .  . . , a,,,, a:, . . . , a,:,, a ! ,  . . . , a,,, a1 , . . . , a.' be a 
basis of V such that the matrix of ( , ) with respect to this basis is 

t 

I O  I 
i.e. (ai,a,)=(a:,aj+)=(a;, a,)=(a:. a:)=O and (a,.a;)=6,,=(a,, a;). So V =  
VEOVi, { a j ,  a:} is a basis for Vo and (a , ,  a:} a basis for Vi. We can construct the 
super Heisenberg algebra sh(V)  as a central extension of the Abelian Lie superalgebra 
V by an even generator c. We have an exact sequence 0 + R c + sh( V )  + V+ 0, and 
the Lie bracket is defined by [U, u]=(u, u)c,Vu, U S V .  We also write sh( V ) =  
sh(2nl2rn). Let W( V )  be the quotient of the universal enveloping algebra U(h( V ) )  by 
the ideal generated by c- i. This is the super Weyl algebra. Therefore W( V )  is generated 
by a,, a:, a;,  a: if we identify the basis of V as their images in U(h( V)) and W( V) .  
The relations are 

[a;, a,] =o= [a;, a,] = [a:, a;]= [a:, a:] 

[aj,aJ]=i6,=[a;,  a:]. (3) 

We also write W( 1') = W(2nl2m). There is a natural grading in W( V )  determined by 
assigning U;,  a:, a jand  a: to have degree 1 .  So W(V)= Qjs0 W j  where W, consists of 
degree i elements. The associated graded algebra gr W( V )  is the full (super) symmetric 
algebra S ( V )  on V. The quadratic elements S2(V)=S2Vo@( V o @ V I ) Q R V I  inside 
W( V )  act on V as derivations preserving ( , ): that is to say for a linear operator 
D with degree d we have 

(i) D(ab) = (Da)b + (- l)""a(Db) 
(ii) (Da,b)+(-l)"'(a, Db)=O, Vu, b s V .  

S2( V )  is therefore a Lie superalgebra with even part S2( Va)@RVl and odd part 
VOQ V I .  There is an identification of all infinitesimal transformations of V preserving 
( , ) with S 2 ( V ) ,  and this subalgebra of End(V) is the orthosymplectic Lie super- 
algebra asp( V )  = osp(2n I 2m). In the special cases when Vo = 0 (respectively V I  = 0) we 
recover the Weyl algebra and the symplectic algebra sp( V )  on one hand, and the Clifford 
algebra associated with a symmetric bilinear form on V, and the orthogonal algebra. 

With respect to the aforementioned basis of V, elements of osp(2nI 2m) are super 
matrices which satisfy the equation AS'+A=O, where A" is the supertranspose of A 
[6] .  The isomorphism beween asp( V )  and S2( V )  can be determined as follows. For all 
u sosp fV)  let a(u) be the corresponding element in S 2 ( V ) .  Then for all U E  V, 
[a(u), u]=u(u) .  The basis of S 2 ( V )  is given by quadratic elements of the form 

for B vo a:aj+aJa: + +  
ai a, ai 0, 

utaj, a: ai, a:a, ai a, 
2 

for VaQ V ,  + +  
a; + aj-aJaF 

ata; for A' V,  . 
2 

a< '"I 
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We see further that there is a semi-direct sum osp( V ) @  Vof Lie superalgebras: osp( V )  
acts on Vas derivations preserving ( , ). For U .  U E  Vdefine l u . u ~ ~ ~ ~ p (  V )  by l. ..(w)= 
? [ ( U ,  w)u+(u,  w ) ~ ] ,  then V6 belongs to the odd part and Vi belongs to the even part 
of this enlarged Lie superalgebra. For instance, when Vi=O we have sp(Vo)@V6= 
osp( 112~). Originally, we can think of the basis a,, U: as bosonic oscillators which obey 
canonical commutator relations. However, when a,, a:. Vicosp(  1[2n) we have to 
impose anti-commutator relations [a, a;]+ =a;a; +a:,, for osp( 1 Itn). This 'parity rever- 
sal' phenomenon has been mentioned in Beckers and Cornwell [7] and Gunaydin [SI. 
For the case of V6=0, we have 0(2nr)@V=o(2nr+ 1) [9 ] .  

Next, we turn to the representation-theoretic significance of the super Weyl algebra. 
Even though we can view W( V )  as a deformation of the (super) symmetric algebra 
S( V )  on I/, W( I/) is important in the extreme cases when Vo=O or Y ,  = O  to induce 
the metaplectic (Segal-Shale-Weil) representation for the symplectic algebra (group) 
and the spinor representation for the orthogonal algebra (group), respectively. Explic- 
itly, the construction is via the action of the Lie algebras on the Fock spaces (bosonic 
or fermionic). We view the basis elements of Vas bosonic or fermionic oscillators where 
ai and a,  are creation operators and a: and a: are annihilation operators. 

Let S be the algera generated by x, ( I  <ism), y,(I<j<n) which is symmetric in 
xis and antisymmetric in J,S. Therefore S is just the polynomial algebra on x,s tensor 
the exterior algebra generated by yis. For ( k ,  I ) = ( k , ,  . . . , k,,,; I , ,  . . . , [,)E 
Z ' ~ O  x {O, I }  n, we define 

I 

( k s  Z o )  

otherwise 
x ( k ) : =  

Clearly the set { x ( k ) . y ( / ) [  ( k , / ) E i g O x  (0, I}"} is an algebraic basis of S as a 
vector space. W( V )  acts on S via 

a,(x(k)):= k,x(k  -e , )  

a t ( x ( k ) )  :=x(k  + e,) 
a,(J.(r)):=(-l)'l+"'+'"~ l y ( [ - & )  

a i ( y ( l ) )  := (- 1)'+,.,+'#-ly([+&) 

x(k ) :=O if some ki<O (5) 

and 

Vk=(/ t , .  . . , /.,)E&!o and V k { O ,  I } "  where e,s are elements of E'g,,f;,s elements of 
{O, I }  " defined by e,= (0,. . . , 1, . . . , O), etc. a, and a,' act trivially on all y(l)s while 
ap and a i  act trivially on all x(k)s .  Then we have the following. 

Theorenr 1. The representation S of W( V )  is irreducible. 

Proof. Let U be a subrepresentation of S and let ~ = Z h ~ a ~ , ~ x ( k ) ) ( l )  (ah,,e:@) be non- 
zero in U, then there is a maximal element kn=(kP) in { k E Z T o [  axJ#O} for fixed 
le (0, I}" according to the lexigraphical order and we can pick the maximal element ko 
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among the set {O, 1) ", which is finite. Then for this ko, 1' 

d . . . a$al?. . . a 5  = ako,lokp! . , . k;! x(O)y(O) (6) 
so x ( 0 ) y ( O ) ~ U .  But obviously S =  W .  x(O)y(O) by construction, therefore U=$. 

S has a natural grading S= @Z0 S'*' by assigning x, and yi to have degree 1. In  
l 2 k t l l  particular S=S,QS,d where S,,:=S= @ b o S ' 2 k ' ,  & d : = S = @  x = o s  * . 

Since the orthosymplectic algebra OSp(2m I 2n) embeds as quadratic elements of 
W( V ) ,  S becomes an osp-module. This is called the super oscillator representation of 
osp(2ml2n) (or Singleton representation in the physics literature [ I O ,  1 I ]  because only 
one set of bosonic and fermionic oscillators are used in the construction). 

Theorem 2. The OSp(2m I2n) module S,, (respectively Sod) is irreducible and is generated 
by x(O)y(O) (respectively x(@,J). 

Also, if we define a Hermitian form ( I ) on S such that (x(O)jx(O))= I and 
(y(O)Iy(O))= 1 and make S a  *-representation of W ( V )  with u::=a: and a::=ai  and 
an orthogonal basis is given by 

(x(k)y(I )  I x(k')y( l ' ) )  = 6xw61rk,! . . . k,! Vk, k'cU';o f , l ' € { O ,  I ) " .  (7) 

Theoreni 3. ( 
(S,( I )) is then a 'unitary' representation of W( V ) .  

Remark 1. A *-algebra is a C-algebra (or superalgebra) with a C anti-linear algebra 
automorphism *:  a H a* such that * is a graded involution. A representation W of *- 
algebra A is a wepresentation if there exists a Hermitian form ( I ) such that 
(aul o ) = ( - l ~ ( u I a * v ) V u ,  IJS W, Va'aeA. Wis called unitary if ( I 

I ) is the unique Hermitian form satisfying the above properties and 

) is definite. 

In the purely even case the representation theory of the Heisenberg algebra and 
group are fairly simple: there is essentially only one unitary irreducible representation 
for the Heisenberg group If,,,, where the centre acts non-trivially. This essentially means 
that any two such representations with the same action of the centre are unitarily 
equivalent. This is the content of the Stone-Von Neumann theorem [l2]. Let V be a 
2n-dimensional real vector space. We can associate the Heisenberg algebra sh(2n IO), 
the Weyl algebra W(2nlO), the symplectic algebra sp(2n) as well as the corresponding 
groups H(2n). Sp(2n) with V. Among all the equivalent infinite-dimensional represen- 
tation spaces which give the unique unitary irreducible representation, two are of special 
interest. The first is the Schwarz space in I,'@") and this is called the Schrodinger 
representation p :  H(2n) -+Aut(S(R")). H(2n) is the simply connected (2nf 1)- 
dimensional real Lie group with Lie algebra sh(2n IO). If (x I , .  . . , xJ are the standard 
coordinates on 88" and ( U ] . .  . . ,a , , ,n: ,  . . . , U : )  is a basis of V such that 
[a,, u;]=S&-lc where c is the generator of the centre of H(2n) then p is defined as 
follows: 

p(exp(xaj))( f ) ( u )  = exp(2niujlf(u) 

P(exP(yaat))(f)(u)=f(u i- J3 (8) 

p(exp(tc))f(u) =exp(2~Wf(u )  some I d  for 1 sisn. 
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Therefore, infinitesimally we have 

(dp)(aO(f )(U) = 2ziuJ(u) 

(dp)(d)(f)(u)  =- 

( d p ) ( c ) ( f W  =2xiAf(u) 

(9) af 
aui 

where fcS(W"). The symplectic group Sp(2n,  R) acts as automorphisms of H(2n)  and 
hence from the Stone-von Neumann theorem there exists an intertwining action of 
Sp(2n, R) on S(R"). I t  is well known that this is not a true representation but rather a 
projective representation. It can be lifted to a double cover Mp(2n, R) of Sp(2n. W) to 
become a true representation of this group. This is called the metaplectic or oscillator 
representation. We describe Mp2(R) as the set 1131 

{ (A , j t !2 (A ,  7 ) )  with AcS&(R), j ( A ,  r )=cr+di f  A =  : ) , r c H } .  

The lift of any discrete subgroup of SL,(R) is still discrete in Mp2(R). The group law in 
Mp2(R)  is simply given by ( A l , j ' ? ' ( A , r ) ) .  ( A ~ , j ' ~ ( A 2 , r ) ) = ( A t " 2 , j ~ ' ~ ( A ~  A 2 , r ) ) .  
which makes use of the property j ( A I A 2 ,  r )  = j ( A l ,  A2. r ) j (A2 ,  r) .  We can view it as a 
representation of the semi-direct product Mp(2n) D( H(2n) .  On the other hand, the Fock- 
Bergman model explicitly shows that in fact Mp(2n) K H(2n) acts holomorphically. 

One would like to extend the above bosonic picture to the supersymmetric case. I t  
is well known that the fermionic picture corresponds to the representation theory of 
the Jordan algebra, orthogonal algebra and group, and also the Clifford algebra and 
its spinorrepresentation (see [15], [16]). The super analogue ofthe Stone-von Neumann 
theorem should correspond to the following proposition in the even case. 

T/~eorei~z 4. There exists a unique 'unitary' simple W( V )  module. 

Proof. Basically this is given by the bosonic Fock space. In the supersymmetric case, 
if V= V&Vi is the decomposition into even and odd parts, the Weyl algebra 
W( 1') 2 (V6)Qr W( Vi) where the canonical isomorphism follows from the super 
Poincare-Birkoff-Witt theorem. Up to equivalence, we have a unique irreducible W( Vo) 
module, the bosonic Fock space MO and a unique irreducible W( Vi)  module, the finite- 
dimensional fermionic Fock space, M I .  We take M:= M o @ M t .  Then Mis an irreducible 
IV( V )  module. For the uniqueness part, let N be an irreducible W( V )  module and let 
N0:=Hom.,.,,(M1, N ) ,  then NoQrcM, E N  as a W( V )  module. Since N is irreducible 
as a W( V )  module, so must No be as a W( VO) module, hence N o g  MO and N z M .  

Notice that we need diml'=2n1 2nz in order to ensure that the Clifford algebra 
W( VI) has only one irreducible module. 

Next we consider the extension of the SchrGdinger representation to the super 
Heisenberg algebra sh(2112 I2n) and group s N ( 2 m  I2n). 

The target space for the super Schrodinger representation is L2(Rn""):= L2(R")Qr 
P(K")* and the smooth vectors are the Schwarz space S(W"""):=S(R")~~(W"')*, 
i.e. the analysis appears solely in the even part. The appropriate Hermitian form is 
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(10) 

91 . . . 9, d9= I s 1 d9=0 s 
follows the Berezin rule of integration and (x, 9) = (x, , . . . , x,; S , ,  . . . ,8,,,) are the 
coordinates on Rnl'". ( , ) is non-degenerate, even and sh(2nI 2 n )  invariant with 
respect to the super Schrodinger representation. 

Infinitesimally dp sends U, to multiplication by Ziiixi, U,' to a/ax,, a, to multiplica- 
tion by 2iii9, and U: to 8/88,; also, the centra1 element c acts by multiplication by i. 
We have 

( d p ( M x ,  W,g)+(f,dp(u)g)=O ( 1  1) 

for all ucsh(2mI 2n) andf, geL*(R"l"?. For the sake of simplicity, we restrict ourselves 
only to the simplest situation n = m =  I without losing generalities. In exponentiating 
the Lie algebra action t 2 ( R ' I ' )  to the group level, we obtain 

{ p  (exp(ka))f} (x, 9) = exp(2nikx)f(x, 9 ) 

{pfexp(la+))fHx, $)=f(x+I, 8 )  

where (x, 8 )  is the coordinate on RI", k, I are even real parameters and 0, p are odd 
real parameters. We call this the super SchrBdinger representation of sH. 

4. Super theta functions as matrix coefficient 

We recall that an even family of supertori is defined as the quotient of C t l '  with the 
standard superconformal structure ( D : =  a/aO f Ba/ar with respect to global coordi- 
nates (2, e) )  by the action of an Abelian subgroup-E2 generated by 

~ : ( z , e ) ~ ( Z + i , e )  

B : ( ~ ,  e) C, ( z +  r, -e) with Imr>O 

since this even supertori family 

C ' l ' x H  
22 
I H 

gives a split super Riemann surface [ 161 of  genus I ,  the minus sign in the last expression 
specifies the corresponding even spin structure on the underlying tom X,:=C/;e+ Zr. 
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The corresponding spinor section is given by 

where @(z) is Weierstrass pfunction. The other two even spin structures are respec- 
tively associated with 

A : ( ~ ,  e )  i--r (=+ I ,  -e )  E : ( &  0) H (i+ T, 0 )  

and 

A : ( z ,  0) h (z+ 1, -0) B:(: ,  e)  H (;+ 5 ,  -0) . 
We recall the fact that the S L 2 ( Z )  action preserves the odd spin structure on X ,  and 
the modular transformation 

a b  
c d  

transforms the even spin structures into one another. The subgroups of SL,(Z) which 
preserve an even spin structure are conjugate io 

r0(2):={( a b  ) e S L 2 ( Z ) : (  a b  )e( I *  )mod2]. 
c d  c d  0 1  

Let f0(2) be the lift of T0(2) to the metapleclic group Mp2(R).  The necessity of introduc- 
ing Mp2(W) is just a way to allow taking square roots of functions! 

Le1 Y.,+H, where H is the upper half plane, be the family of even supertori 
C " '  X 7 d ~ + H .  

Since an even family Y , , + H  is given by a quotient of Cl l '  with respect to two 
generators, we will have four super theta functions after Levin [3]. 

Theorem 5. The series 

where exp[u. c]:=(expu)(l +c )=exp(u+<)  is the exponential function on C'I ' ,  
&, &€IO, :}, converges absolutely and uniformly on compacta and thus defines a holo- 
morphic function S%.2c(z, c1 r )  on C"' x H ,  called the even super theta function with 
characteristics 6 and E. 

We want to relate the even super theta functions to the super Schrodinger represen- 
tation. We take the Gaussian vr(x) =exp nir.3 with r EH where (x, 0) is the coordinate 
on Utk1', then U, is holomorphic function of T and as a function of ( x ,  0) i t  belongs to 
S(R'I'). We compule fork,  [I 6 ,   ER^'^, 
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Theoreni 6. We define the 'theta distribution' 1 on LZ(Ri") so that 

(&f( s) + g(x)9) = f ( m  + 6)  + ( - I )" '+ &g(m + 6)  (17) 
,>,E? 

where bc(0,  i]  ;mdf(x)+g(x)$EL'(IW'"). Then we have 

QSYS.di, c i  z ) = ( 1 . p ( e x p k o ) ~ ( e x p ~ a ~ ) p ( e x p u a ) p c ( e x p p a f ) u , ) .  (18) 

This is holomorphically dependent on c and 0, which are the appropriate holomorphic 
coordinates on C " '  with the odd 'imaginary' part p degenerated. 

Proof. We have 

(& p(expka)p(exp la+)Aexp ua)p(exp pa+)u<> 

( 1 %  I = C exp 2m 7 f ( P i ? +  6 ) Z +  (-1 Y+'(?iZ+6)U 
?"Cl 

where z : = k + l r .  I t  is clear that we obtain S ~ . , ( z , [ l  r )  as the matrix coefficient of 
sH(212). 

In  conclusion, we do not get a representation of the seini-direct product sH(2 12) 
with OSP(2I 2) here, nor have we described explicitly what the OSP action is, even 
though the infinitesimal action has been given above. We would like to address these 
issues elsewhere. However, what we have done so far suggests a more geometric 
approach to super theta functions and the Weil representation even though there are 
important differences between the even and odd cases because the existence of a cubic 
term in3 in the definition of odd super theta functions [17] means that we cannot work 
with the Gaussian which can only provide a quadratic term m2 as in the definition of 
the even super theta functions. 
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